
 
This work was supported by the California Energy Commission EPC-14-056 fund. 

Hamidreza Nazaripouya  

University of California, 

Riverside 

Winston Chung Global Energy 

Center 

Riverside, CA, USA 

hamidn@ucr.edu 

Peter Chu 

University of California, Los 

Angeles 

Smart Grid Energy Research 

Center 

Los Angeles, CA, USA 

peterchu@g.ucla.edu 

Hemanshu Pota 

University of New South 

Wales,Canberra 

School of Engineering and 

Information Technology 

Canberra, Australia 

h.pota@adfa.edu.au 

Rajit Gadh 

University of California, Los 

Angeles 

Smart Grid Energy Research 

Center 

Los Angeles, CA, USA 

gadh@ucla.edu

 

 

Abstract— This paper proposes a new method for optimal design of minimum-length, minimum-phase, low-group-delay FIR 

filter by employing convex optimization, discrete signal processing (DSP), and polynomial stabilization techniques. The design of 

a length-N FIR filter is formulated as a convex second-order cone programming (SOCP). In order to design a minimum-phase FIR 

filter as the necessary condition for having low group delay, the algorithm guarantees that all the filter’s zeros are inside the unit 

circle (minimum-phase). In addition, the quasiconvex optimization problem is developed to minimize the length of minimum-

phase, low-group-delay FIR filter. To this end, for a typical low-pass FIR filter, the length of the filter is minimized such that the 

optimum magnitude response is satisfied, the minimum-phase characteristic is maintained, and the low-group-delay is achieved. 

The proposed design algorithm only relies on one parameter (cut-off frequency) and the rest of filter parameters are automatically 

optimized as the trade-off between having minimum-length, minimum-phase, maximum stopband attenuation and low group delay. 

The effectiveness and performance of proposed approach is demonstrated and compared with other approaches over a set of 

examples. It is illustrated that this approach converges to the optimal solution in a few iterations.  

 

Key-Words: Group delay, minimum-phase, Finite Impulse Response (FIR) filter, Low pass filter, Convex optimization, Discrete 

signal processing   

 

 

I. INTRODUCTION 

 filter, in practice, is generally implemented through 

digital computation, and it is used to filter a discrete signal 

derived by periodic sampling from continuous-time 

counterpart. To this end, most often, design techniques are 

based on the discrete-time nature of the signals, and discrete-

time filters (digital filters) are deployed. Therefore, the main 

focus of this paper is on discrete-time finite impulse response 

(FIR) filters. The design problem of FIR filter is studied more 

than the one of infinite-duration impulse response (IIR) due to 

the existence of an optimality theorem for FIR filters, which is 

meaningful in a wide range of practical situations. In addition, 

DSP micro-computers generally have arithmetic capabilities 

that are designed for accumulating sums of products which is a 

perfect match with FIR filter structure. Therefore, FIR filters 

have always been one of the main building blocks in digital 

signal processing considering their high performance in speed, 

assured stability, and efficient implementations based on the 

Fast Fourier Transform (FFT) [1] .  

So far in the literature, a wide range of FIR filter design 

techniques have been investigated including design of linear-

phase (LP) FIR filters [2], minimum-phase (MP) FIR filters [3], 

and a general (nonlinear-phase) non-minimum-phase FIR 

filters where neither of the first two conditions holds [4]. In 

addition, all of the above filters can be designed with either real 

or complex coefficients.  

Designing the linear-phase FIR filter has attracted significant 

attention and considerable work has been done in this area [5]. 

One of the most popular existing method is the Reméz 

exchange algorithm [6]. The key advantage of linear-phase 

filters is having constant time delay over the entire band. This 

feature is useful in certain applications such as data 

transmission which needs minimum amount of dispersion in the 

transmission channel to avoid problems such as inter symbol 

interference (ISI).  

Minimum-phase FIR filters are also extensively discussed in 

the literature. This is because of their ability for a low group 

delay for a high filter order. They also have lower coefficient 

sensitivity to quantization errors, and a lower order filter for a 

given magnitude response, compared with linear-phase filters.  

  Herrmann and Schuessler [7] initiated a method to 

transform an equiripple LP FIR filter into an MP FIR filter, 

while the MP version has the same attenuation characteristics 

that is found in the modulus squared, but half the degree. 

Authors in [8], using a change of variables and spectral 

factorization, could transform FIR filter design problems as a 

linear or nonlinear convex optimization problem. They solved 

it globally by interior-point methods.  In [9] a non-iterative 
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algorithm is suggested to design optimal MP FIR filters with 

real or complex coefficients based on discrete Hilbert 

transform. A Newton–Raphson iterative algorithm is used in 

[10] to extract the minimum-phase spectral factor from a linear 

phase transfer function. Pei and Lin proposed the real cepstrum 

to design an arbitrary length minimum-phase finite-impulse 

response filter from a mixed-phase prototype [11]. A new 

method of computing the minimum-phase filter and the 

associated all-pass filter using the QL-factorization is presented 

in [12], which is an alternative approach for computing the 

minimum-phase filter in a numerically stable way. Wu, et al. 

propose a direct optimization method for designing low-group-

delay FIR filter [13] and show that their method can produce a 

filter with smaller group delay than that obtained from [8] under 

the same design criteria. Authors in [14] propose an improved 

algorithm for the constrained minimal Lp magnitude error 

design of minimum-phase FIR filters by incorporating the 

Lawson algorithm with the iterative constrained minimal Lp 

elliptic error (ICMEE-p) method. In [15] an algorithm is 

developed for the design of minimum-phase FIR filters with 

sparse impulse responses. In [16] the authors formulate the MP 

filter design problem in form of a set of nonlinear equations, 

which are solved using the Levenberg–Marquardt optimization 

method.  

This paper associates the response delay of FIR filter with 

filter group delay, and also relates the cost and complexity of 

the controller to the length of the FIR filter. Thus, the focus of 

this paper is on a new design for minimum-phase, minimum-

length FIR filters with low-group-delay as a solution to achieve 

lower time delays and lower cost. These features make the 

proposed filter a good candidate to be utilized in state-of-the-

art method for channel coding entities of 4G/5G system [17].   

There are several factors that should be considered in 

designing an optimal, effective, and fast response low-pass FIR 

filter besides satisfying the cut-off frequency criterion. These 

factors include 1) length: minimizing the filter length reduces 

the complexity and cost of the controller. 2) Group delay: a 

filter with smaller group delay causes less lag between input 

and output filter signals. 3) Stopband attenuation: a higher 

stopband attenuation for a specific length of filter leads to a 

better filtering performance.  

This paper initiates an approach for an optimal design of 

minimum-length, low-group-delay FIR filter with maximum 

stopband attenuation for a given cut-off frequency. The user 

needs to determine only the level of filtering by defining the 

low-pass filter cut-off frequency, and the proposed algorithm 

automatically optimizes the other design parameters of the filter 

in order to find a low delay, high performance FIR filter, 

accordingly.  

The rest of the paper is organized as follows: in Section II, 

the FIR filter background and the problem statement are 

presented. In Section III, the proposed design algorithm 

including convex optimization, discrete signal processing, and 

polynomial stabilization techniques is introduced. Design 

examples for a set of filters and the results comparisons with 

the alternative approaches are provided in Section IV. Finally, 

the concluding remarks are given in Section V.  

II. FIR FILTER PROBLEM DESCRIPTION 

A length-N FIR filter can be represented by its frequency 

response as [18]: 

𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

 

 

 (1) 

where ℎ[𝑛], 𝑛 = 0,1, … , 𝑁 − 1 , are real filter coefficients. The 

frequency response 𝐻(𝑒𝑗𝜔) can be characterized by its 

magnitude and phase as: 

𝐻(𝑒𝑗𝜔) = |𝐻(𝑒𝑗𝜔)|𝑒𝑗𝜑(𝜔) 
(2)               

where |𝐻(𝑒𝑗𝜔)| represents the magnitude of 𝐻(𝑒𝑗𝜔), and 𝜑(𝜔) 

is the phase. The group delay, grd[𝐻(𝑒𝑗𝜔)], is defined as: 

𝜏(𝜔) = grd[𝐻(𝑒𝑗𝜔)] = −
𝑑

𝑑𝜔
(arg[𝐻(𝑒𝑗𝜔)]) = −

𝑑𝜑(𝜔)

𝑑𝜔
 (3) 

As opposed to the phase delay which is a measure of the time 

delay of the phase of a sinusoid at frequency 𝜔, group delay is 

a measure of the time delay of the amplitude envelopes of the 

various sinusoidal components of the signal. That is, the group 

delay reflects the time difference from the input pulse envelope 

peak to the output pulse envelope peak. The idea of designing a 

filter with low-group-delay is to minimize the time-delay 

induced by the filter for the real-time signal processing 

applications. 

The problem in this paper is defined as designing a 

minimum-phase low-pass filter, which has the following 

specification: 1) maximum attenuation within the stopband, 2) 

low-group-delay within the passband, and 3) minimum length. 

This problem can be expressed as (4):  

𝑚𝑖𝑛 
ℎ[𝑛]

𝛼1𝑁 + 𝛼2𝜀1 + 𝛼3𝜀2  

 s.t.   ‖𝐻(𝑒𝑗𝜔)‖
2

≤ 𝜀1 𝑓𝑜𝑟   𝜔 ≥ 𝜔𝑐    (4)   

grd[𝐻(𝑒𝑗𝜔)] ≤ 𝜀2 𝑓𝑜𝑟 𝜔 ≤ 𝜔𝑐     

where N is the length of FIR filter,  𝜀1 and 𝜀2 are the upper limits 

for filter magnitude response within the stopband, and filter 

group delay within the passband, respectively; 𝜔𝑐 represents the 

cutoff frequency, grd[𝐻(𝑒𝑗𝜔)] is the group delay of the 𝐻(𝑒𝑗𝜔) 

filter, and 𝛼1, 𝛼2 and 𝛼3 are weighting factors. 

In (4), the cost function is defined in a way to 1) minimize 

the filter magnitude at stopband, and thus maximizes the filter 

stopband attenuation by minimizing 𝜀1, 2) minimizes the filter 

passband group-delay by minimizing 𝜀2 , and minimize the 

filter length by minimizing 𝑁, while there is always a tradeoff 

between these objectives. 

Considering the fact that 𝐻(𝑒𝑗𝜔) should be also a minimum-

phase filter, the optimization problem in (4) is not a convex 

optimization problem. Also because of the nonlinearity of 

grd[𝐻(𝑒𝑗𝜔)] with respect to ℎ[𝑛], the optimization problem 

defined in (4) may not be solvable directly [19]. Therefore, the 

original problem should be transformed so that it can be solved. 

III. THEORY DEVELOPMENT 

The proposed design algorithm employs three separate 

strategy including 1) discrete signal processing theorems 2) 

optimization algorithms, and 3) polynomial root analysis to 

solve the problem in section II. The discrete signal processing 

theory is utilized to develop an appropriate FIR filter, in discrete 

time domain. The optimization algorithm is used to formulate 
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and optimize the parameters of the filter in order to minimize 

the length, maximize the stopband attenuation and reduce the 

passband group delay. Finally, the polynomial root analysis 

theorem helps to include the minimum-phase feature when the 

optimization problem is developed.   

A. Discrete signal processing 

One of the key objectives of this paper is to design a filter 

that has a low-group-delay. For this purpose, the focus of this 

section is on designing a “minimum-phase” FIR filter, which 

refers to systems that are causal and stable and that have a 

causal and stable inverse. The motivation for designing a 

minimum-phase filter is related to some properties that these 

type of filters offer.  The following theorems summarize these 

properties [18]. 

a) The Minimum-phase-Lag Property 

Theorem 1 [18]: The causal, stable system that has 

|𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)| as its magnitude response and also has all its zeros 

and poles inside the unit circle has the minimum-phase-lag 

function (for 0≤𝜔≤𝜋) of all the systems having that same 

magnitude response.  

The continuous phase, i.e., arg[𝐻(𝑒𝑗𝜔)], of any 

nonminimum-phase system can be expressed as (5): 

arg[𝐻(𝑒𝑗𝜔)] = arg[𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)] + arg[𝐻𝑎𝑝(𝑒𝑗𝜔)] (5) 

where the continuous phase that would correspond to the 

principal-value phase of 𝐻(𝑒𝑗𝜔) is the sum of the continuous 

phase associated with the minimum-phase function 

(arg[𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)]) and the continuous phase of the all-pass 

system (arg[𝐻𝑎𝑝(𝑒𝑗𝜔)]). 

The continuous-phase of an all-pass system is negative for 

0≤𝜔≤𝜋. Thus, the reflection of zeros of 𝐻𝑚𝑖𝑛(𝑧) from inside 

the unit circle to conjugate reciprocal locations outside always 

decreases the (continuous) phase or increases the negative of 

the phase, which is called the phase-lag function.  

b) The Minimum Group-Delay Property 

Theorem 2 [18]: Among all the systems that have a given 

magnitude response |𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)|, the one that has all its poles 

and zeros inside the unit circle has the minimum-group-delay. 

First note that the group delay for the systems (grd[𝐻(𝑒𝑗𝜔)]) 

that have the same magnitude response can be calculated as (6): 

grd[𝐻(𝑒𝑗𝜔)] = grd[𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)] + grd[𝐻𝑎𝑝(𝑒𝑗𝜔)] (6) 

The group delay for the minimum-phase system is always 

less than the group delay for the nonminimum-phase system. 

This is because, the all-pass system that converts the minimum-

phase system into the nonminimum-phase system has a positive 

group delay. This is a general property of all-pass systems; they 

always have positive group delay for all ⍵.  

c) The Minimum Energy-Delay Property 

Theorem 3 [18]: For any causal, stable sequence ℎ[𝑛] for 

which |𝐻(𝑒𝑗𝜔)| = |𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)|,  then |ℎ[0]| ≤ |ℎ𝑚𝑖𝑛[0]|. 
All  the  impulse  responses  whose  frequency-response  

magnitude  is  equal  to  |𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)| have the same total energy 

as ℎ𝑚𝑖𝑛[𝑛], since, by Parseval’s theorem, 

∑|ℎ[𝑛]|2

∞

𝑛=0

=
1

2𝜋
∫ |𝐻(𝑒𝑗𝜔)|

2
𝑑𝜔 

𝜋

−𝜋

 

=
1

2𝜋
∫ |𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)|

2
𝑑𝜔 

𝜋

−𝜋

= ∑|ℎ𝑚𝑖𝑛[𝑛]|2

∞

𝑛=0

 

(7) 

If we define the partial energy of the impulse response as 

𝐸[𝑛] = ∑ |ℎ[𝑚]|2𝑛
𝑚=0  then it can be shown that  

∑ |ℎ[𝑚]|2

𝑛

𝑚=0

≤ ∑ |ℎ𝑚𝑖𝑛[𝑚]|2

𝑛

𝑚=0

                                 (8) 

for all ℎ[𝑛] belonging to the family of systems that have the 

magnitude response |𝐻(𝑒𝑗𝜔)| = |𝐻𝑚𝑖𝑛(𝑒𝑗𝜔)|.  According to 

(8), the partial energy of the minimum-phase system is mostly 

concentrated around m = 0; i.e., the energy of the minimum-

phase system is delayed the least of all systems having the same 

magnitude response function. For this reason, minimum-phase 

(lag) systems are also called minimum energy-delay systems, 

or simply, minimum-delay systems.  

In general, the minimum energy delay occurs for the system 

that has all its zeros inside the unit circle (i.e., the minimum-

phase system) and the maximum energy delay occurs for the 

system that has all its zeros outside the unit circle.  

According to the above theorems, the proposed method in 

this paper formulates the problem in a way to ensure all zeros 

of the filter are inside the unit circle in order to minimize the 

delay in real time application. The next section will describe 

how the optimization algorithm and polynomial root theorem 

are employed to formulate the optimization problem. 

B. Optimization 

This section describes how the minimum-length, minimum-

phase, low-group-delay filter is designed by solving convex and 

quasi-convex optimization problems.  

According to the definition of group-delay in (3), the first 

step is to formulate the group-delay based on filter coefficients. 

In the amplitude/phase representation: 

𝐻(𝑒𝑗𝜔) = 𝐴(𝜔)𝑒𝑗𝜑(𝜔)   (9) 

where 𝐴(𝜔) = |𝐻(𝑒𝑗𝜔)| represents the magnitude of 

𝐻(𝑒𝑗𝜔). Differentiating both sides of (9), 

𝐻′(𝑒𝑗𝜔) = 𝐴′(𝜔)𝑒𝑗𝜑(𝜔) +  𝐴(𝜔)𝑒𝑗𝜑(𝜔)(𝑗𝜑′(𝜔))   (10) 

and dividing (10)  by 𝐴(𝜔)𝑒𝑗𝜑(𝜔), since both 𝐴′(𝜔)/𝐴(𝜔) and 

𝜑′(𝜔) are real, 

𝜏(𝜔) = 𝐼𝑚 (
𝐻′(𝑒𝑗𝜔)

𝐻(𝑒𝑗𝜔)
)                                   (11) 

If ℎ[𝑛] ⟷ 𝐻(𝑒𝑗𝜔), we can apply the frequency 

differentiation property of the Fourier transform and get, 

−𝑗𝑛ℎ[𝑛] ⟷ 𝐻′(𝑒𝑗𝜔).   

Denoting Fourier transform of ℎ[𝑛] as 𝐹. 𝑇. (ℎ[𝑛]), 

𝜏(𝜔) = −𝐼𝑚 (
 𝐹. 𝑇. (−𝑗𝑛ℎ[𝑛])

𝐹. 𝑇. (ℎ[𝑛])
)                          (12) 

and finally,  

𝜏(𝜔) = 𝑅𝑒𝑎𝑙 (
 𝐹. 𝑇. (𝑛ℎ[𝑛])

𝐹. 𝑇. (ℎ[𝑛])
)                           (13) 

It is desired to design the filter with minimum possible 
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group-delay in the passband in order to have a fast response and 

minimize the gap between input and output signals of the filter. 

For this purpose, the idea is to force the group delay at ⍵=0 

equal to zero. One can have 

𝜏(0) = 𝑅𝑒𝑎𝑙 (
 𝐹. 𝑇. (𝑛ℎ[𝑛])

𝐹. 𝑇. (ℎ[𝑛])
)|

𝜔=0

= 0 ⟷ ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

= 0 

(14) 

Constrain (14) (∑ 𝑛ℎ[𝑛]𝑁−1
𝑛=0 = 0) can satisfy the zero group 

delay for the DC component of the signal.  

By expanding (13), the group-delay can be expresses as (15): 

𝜏(𝜔) =
∑ 𝑛ℎ[𝑛]𝑁−1

𝑛=0 𝑐𝑜𝑠(𝜔𝑛)  × ∑ ℎ[𝑛]𝑁−1
𝑛=0 cos (𝜔𝑛)

∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛𝑁−1
𝑛=0 × ∑ ℎ[𝑛]𝑒𝑗𝜔𝑛𝑁−1

𝑛=0

 
 

+
∑ 𝑛ℎ[𝑛]𝑁−1

𝑛=0 𝑠𝑖𝑛(𝜔𝑛)  × ∑ ℎ[𝑛]𝑁−1
𝑛=0 𝑠𝑖𝑛(𝜔𝑛)

∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛𝑁−1
𝑛=0 × ∑ ℎ[𝑛]𝑒𝑗𝜔𝑛𝑁−1

𝑛=0

 
(15) 

Making the derivation from (15) and performing additional 

mathematical operations, one can write: 

𝜏′(𝜔) =
(−𝑀 + 𝑁) × 𝐾 − 𝐿 × 𝐺

𝐾2
                         (16) 

where  

𝑀 = ∑ 𝑛2ℎ[𝑛]

𝑁−1

𝑛=0

𝑠𝑖𝑛(𝜔𝑛) × ∑ ℎ[𝑛]

𝑁−1

𝑛=0

𝑐𝑜𝑠𝜔 

+ ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

𝑐𝑜𝑠(𝜔𝑛) × ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

𝑠𝑖𝑛(𝜔𝑛)  

𝑁 = ∑ 𝑛2ℎ[𝑛]

𝑁−1

𝑛=0

𝑐𝑜𝑠(𝜔𝑛) × ∑ ℎ[𝑛]

𝑁−1

𝑛=0

𝑠𝑖𝑛(𝜔𝑛) 

+ ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

𝑠𝑖𝑛(𝜔𝑛) × ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

𝑐𝑜𝑠(𝜔𝑛) 

𝐿 = ∑ −𝑗𝑛ℎ[𝑛]𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

× ∑ ℎ[𝑛]𝑒𝑗𝜔𝑛  

𝑁−1

𝑛=0

 

+ ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛

 𝑁−1

𝑛=0

× ∑ 𝑗𝑛ℎ[𝑛]𝑒𝑗𝜔𝑛

𝑁−1

𝑛=0

 

𝐺 = ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

𝑐𝑜𝑠(𝜔𝑛)  × ∑ ℎ[𝑛]

𝑁−1

𝑛=0

𝑐𝑜𝑠(𝜔𝑛) 

+ ∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

𝑠𝑖𝑛(𝜔𝑛)  × ∑ ℎ[𝑛]

𝑁−1

𝑛=0

𝑠𝑖𝑛(𝜔𝑛) 

𝐾 = ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

× ∑ ℎ[𝑛]𝑒𝑗𝜔𝑛

𝑁−1

𝑛=0

 

Equation (16) depicts the first derivative of group-delay. By 

substituting constraint (14) into (16), we obtain: 

∑ 𝑛ℎ[𝑛]

𝑁−1

𝑛=0

= 0 ⟷ 𝜏′(0) = 0                                   (17) 

Equation (17) shows that condition (14) also provides the 

zero slope for group delay at ⍵ = 0 (𝜏′(0) = 0), which can 

further restrict the growth of the group delay in the passband.      

Although constraint (14) reduces the low frequency group 

delay significantly, another condition is required to obtain the 

low-group-delay FIR filter. Minimum-phase characteristic can 

guarantee the minimum-group-delay among all the systems that 

have the same magnitude response. Next, a helpful theorem to 

define the optimization problem for designing a minimum-

phase filter is given. 

Theorem 4 [20]: Let 𝐵0, 𝐵1, … , 𝐵𝑛 be real scalars (with 

𝐵1, … , 𝐵𝑛 not all zero) and consider the affine family of monic 

polynomials 

𝑃 = {𝑧𝑛 + 𝑎1𝑧𝑛−1 + ⋯ + 𝑎𝑛−1𝑧 + 𝑎𝑛 | 𝐵0

+ ∑ 𝐵𝑗𝑎𝑗 = 0, 𝑎𝑖 ∈ ℝ  

𝑛

𝑗=1

} 

(18) 

By defining the optimization problem 

𝜌∗ ≔  inf
𝑝∈𝑃

𝜌(𝑝)  (19) 

where 𝜌(𝑝)  denotes the root radius of a polynomial 𝑝 and is 

defined as (20), 

 𝜌(𝑝) = 𝑚𝑎𝑥{|𝑧| | 𝑝(𝑧) = 0, 𝑧 ∈ ℂ}  (20) 

The optimization problem in (19) has a globally optimal 

solution of the form 

𝑝∗(𝑧) = (𝑧 − 𝛾)𝑛−𝑘(𝑧 + 𝛾)𝑘 ∈ 𝑃    (21) 

for some integer k with 0 ≤ 𝑘 ≤ 𝑛 , where 𝜌∗ = 𝛾. 

The theorem describes that for the maximum root radius (γ) 

equal to zero, all the coefficient of polynomial need to be equal 

to zero 𝑎1 = ⋯ = 𝑎𝑛−1 = 𝑎𝑛 which leads to 𝑝(𝑧) = 𝑧𝑛. 

Therefore, since problem in Theorem 4 is a convex 

optimization problem, by minimizing the coefficients of the 

polynomial one can move towards the zero root radius. In other 

words, the radius of polynomial roots will be reduced by 

minimizing the polynomial coefficient (𝑎1, … , 𝑎𝑛−1, 𝑎𝑛) while 

𝐵0 + ∑ 𝐵𝑗𝑎𝑗 = 0𝑛
𝑗=1 . This approach will help to push 

polynomial roots inside the unit circle, which is the requirement 

of the minimum-phase filter.   

On the other hand, equation (22) represents the group delay 

contribution of a zero (1 − 𝑟𝑒𝑗𝜃𝑒−𝑗𝜔) in the filter transfer 

function where r is the radius and 𝜃 is the angle of the zero in 

the z-plane, 

grd[1 − 𝑟𝑒𝑗𝜃𝑒−𝑗𝜔] =
𝑟2 − 𝑟 cos(𝜔 − 𝜃)

1 + 𝑟2 −2𝑟cos(𝜔 − 𝜃)
 (22) 

The maximum amount of group delay for each zero happens 

when 𝜔 − 𝜃 =π   thus: 

𝑚𝑎𝑥 (grd[1 − 𝑟𝑒𝑗𝜃𝑒−𝑗𝜔]) =
𝑟

1 + 𝑟
            (23) 

Therefore, minimizing the polynomial coefficient and 

consequently reducing the radius of the polynomial roots (r), 

the group delay eventually decreases which is desirable.  

In summary, considering the FIR filter described by 

𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛𝑁−1
𝑛=0  while design variables are 

coefficients ℎ[𝑛], we explore the problem of the design of a 

low-pass filter, with the following specifications 

1) For 𝜔 = 0 the magnitude of the filter should be equal to 

one (𝐻(𝑒𝑗0) = ∑ ℎ[𝑛] = 1𝑁−1
𝑛=0 ). 

2) For 𝜔𝑐 ≤ 𝜔 ≤ 𝜋 the magnitude of the filter should be 

minimized: (min
ℎ[𝑛]

|𝐻(𝑒𝑗𝜔)| = min
ℎ[𝑛]

‖∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛𝑁−1
𝑛=0 ‖).  

3) For 𝜔 = 0 the group delay should be zero to have no 

delay for DC component and minimum delay in low 

frequency (∑ 𝑛ℎ[𝑛] = 0𝑁−1
𝑛=0 ).  
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4) The coefficient of the filter should be minimized to 

guarantee the minimum-phase filter with minimum-

group-delay (min ℎ[𝑛] 𝑓𝑜𝑟 𝑛 = 1, … , (𝑁 − 1)). 

To this end, the optimization problem can be expressed as 

follows: 

 
where 𝛼 is a weighting factor which is changed in a loop to 

make sure that all roots are placed inside the unit circle for a 

minimum-phase filter. 

Problem (24) can be expressed as the second-order cone 

programming (SOCP) by defining some new parameters as 

follows: 

min 
ℎ[𝑛]

(𝑡1 + 𝛼𝑡2) 

          s.t.   ‖𝐴𝑘𝑥‖2 ≤ 𝑡1   

             ‖𝐵𝑥‖2 ≤ 𝑡2    (25) 

                    𝐶𝑥 = 𝑑     
where 

𝑥 = [ℎ[0] ℎ[1] … ℎ[𝑁 − 1]] 𝑇 

𝐴𝑘 = [𝑒−𝑗𝜔𝑘.0 𝑒−𝑗𝜔𝑘.1 … 𝑒−𝑗𝜔𝑘.(𝑁−1)]        

𝜔𝑐 ≤ 𝜔1 ≤ 𝜔2 ≤ ⋯ ≤ 𝜔𝑘 ≤ 𝜋, 𝑘 = 1, … , 𝑀.  A rule of 

thumb for choosing M, 𝑀 ≈ 15𝑁, is recommended in [21] 

𝐵 = [0 1 1 … 1]1×𝑁                                             

𝐶 = [
0 1 2 ⋯ 𝑁 − 1
1 1 1 ⋯ 1

]
2×𝑁

  

𝑑 = [0 1]𝑇  

As it was shown in (25), a very special form of the semi-

infinite constraints appears in the filter design problems. 

General semi-infinite convex optimization is a well-developed 

field that allows for a solution with no great theoretical or 

practical difficulty. 

Lemma 1 [8]: The semi-infinite inequality constraint 

𝑔𝑖(𝑥, 𝜔) ≤ 𝑡𝑖 for all 𝜔 ∈ [𝜔𝑐 , 𝜋]    (26) 

can be expressed  as the ordinary inequality constraint 

ℎ𝑖(𝑥) = sup
𝜔∈[𝜔𝑐 𝜋]

𝑔𝑖(𝑥, 𝜔) ≤ 𝑡𝑖    (27) 

It is easily verified that ℎ𝑖 is a convex function of x, since for 

each 𝜔, 𝑔𝑖(𝑥, 𝜔) is convex in x. On the other hand, ℎ𝑖 is often 

nondifferentiable, even if the functions 𝑔𝑖  are differentiable. 

Several methods such as bundle methods, ellipsoid methods, or 

cutting plane methods for general (nondifferentiable) convex 

optimization are proposed that can be used to solve the semi-

infinite constraints in (25). These methods require an efficient 

approach to evaluate ℎ𝑖 and a subgradient at any x. This 

involves computing a frequency 𝜐 for which 𝑔𝑖(𝑥, 𝜐) = ℎ𝑖(𝑥). 

It is also possible to solve some magnitude filter design 

problems exactly, by transforming the semi-infinite constraints 

into (finite-dimensional) constraints that involve linear matrix 

inequalities. The semi-infinite constraints can also be 

approximated in a very straightforward way by sampling or 

discretizing frequency. We choose a set of frequencies  𝜔𝑐 ≤
𝜔1 ≤ 𝜔2 ≤ ⋯ ≤ 𝜔𝑀 ≤ 𝜋 often uniformly or logarithmically 

spaced, and replace the semi-infinite inequality constraint (28) 

𝑔𝑖(𝑥, 𝜔) ≤ 𝑡𝑖 for all 𝜔 ∈ [𝜔𝑐 , 𝜋]   (28) 

with the set of M ordinary inequality constraints 

𝑔𝑖(𝑥, 𝜔𝑘) ≤ 𝑡𝑖 for all 𝑘 = 1, … , 𝑀       (29) 

Note that sampling preserves convexity. When M is 

sufficiently large, discretization yields a good approximation of 

the semi-infinite programming (SIP). A standard rule of thumb 

is to choose 𝑀 ≈ 15𝑁. 

There are still two more parameters, N and 𝜔𝑐,  that need to 

be designed in order to have a desired low pass FIR filter, where 

N is the length of the FIR filter and 𝜔𝑐 is the cut-off frequency. 

Theorem 5: The length of an FIR filter is a quasi-convex 

function of its coefficients [22].  

Lemma 2: By defining  𝑓(𝑥)  =  𝑚𝑖𝑛{𝑘 | 𝑥𝑘+1  = · · · =
 𝑥𝑁  =  0}, the sublevel sets of f are affine sets and convex: 

{𝑥 | 𝑓(𝑥)  ≤  𝑘}  =  {𝑥 | 𝑥𝑘+1  = · · · =  𝑥𝑁  =  0}. This means 

that f is a quasi-convex function, and optimization problem is a 

quasi-convex optimization problem. 

Hence, the problem of finding the minimum-length FIR filter 

given cut-off frequency 𝜔𝑐 can be expressed as: 

 
The quasi-convex problem shown in (30) can be solved using 

bisection on N. Each iteration of the bisection involves solving 

an SOCP feasibility problem. 

In summary, the proposed algorithm is an iterative scheme 

with two loops: 1) the outer quasi-convex optimization problem 

loop which adjusts N using bisection method and 2) the inner 

SOCP convex optimization problem loop which adjusts 𝛼. 

Once the minimum-phase and cuff-off frequency criteria are 

met, the proposed FIR filter is obtained. Fig. 1 shows the pseudo 

code of the algorithm, which describes the design process of the 

proposed filter. 

Optimization Problem 1 

Optimization Variable: ℎ[𝑛] 

min
ℎ[𝑛]

‖∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛

𝑁−1

𝑛=0

‖ + 𝛼 ‖∑ ℎ[𝑛]

𝑁−1

𝑛=1

‖ 𝜔𝑐 ≤ 𝜔 ≤ 𝜋 

subject to:  

                            ∑ ℎ[𝑛] = 1

𝑁−1

𝑛=0

 

(24) 

                            ∑ 𝑛ℎ[𝑛] = 0

𝑁−1

𝑛=0

 

 

 

 

Optimization Problem 2 

minimize N  

subject to 

                ‖𝐴𝑘𝑥(𝑁)‖2 ≤ 0.7079 (−3 𝑑𝐵)      𝑘 ∈
𝐼 , 

where 

                 𝐼 = {𝑘|𝜔𝑘 ≥ 𝜔𝑐}     

(30) 
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Fig. 1. Designing algorithm of the proposed filter 

IV. DESIGN EXAMPLES AND RESULT 

In this section, the proposed technique is employed to design 

a set of exemplifying low-pass FIR filters with different 

specifications. The results are compared with the ones obtained 

from alternative design techniques.  

Design 1: the objective of this example is to design the 

minimum-length, low-group-delay low-pass FIR filter with 

maximum attenuation at stopband. Without loss of generality 

the cut-off frequency is selected as 𝜔𝑐 = 0.05 𝜋. In this 

example, the design process, including solving the convex and 

quasi-convex optimization problems, takes 3.18 second to 

converge. Satisfying the selected criterion for cut-off 

frequency, the quasi-convex optimization minimizes the length 

of filter to 52. The obtained cut-off frequency is 0.0501π, which 

is matched with the design parameter and the small deviation is 

due to discretizing the convex optimization problem. 

In order to compare the results, the optimization method 

proposed by Wu, et al. for designing a low-group delay FIR 

Filter [13], is utilized to design the same filter with the same 

cut-off frequency. To this end, the parameters of the Wu filter 

are selected as follows: the length of the filter is 52 to be 

identical with the filter designed by the proposed approach, the 

passband edge is equal to 𝜔𝑝 = 0.0485 𝜋, the stopband edge is 

𝜔𝑠 = 0.057 𝜋, the weighting factor α is 0.00001 based on the 

authors suggestion.  It takes 16.6 seconds for the proposed 

algorithm in [13] to converge to the optimal solution, which is 

almost five times of the convergence time of the proposed 

approach in this paper. Fig. 2 and Fig. 3 depicts the magnitude 

and phase response of the both proposed filter in this paper and 

Wu filter, respectively. In Fig. 2 although the cut-off frequency 

of both filters are aligned, the attenuation of the proposed filter 

is considerably higher at stopband meaning higher level of the 

filtering. 

Fig. 4 shows the group delay of both filters. It can be seen 

that at the passband the group delay of the proposed approach 

is lower than its counterpart desined by algorithm in [17].  

The zero/pole placment of the filters are shown in Fig. 5. This 

figure ilustrtates that the filter desined by the proposed 

algorithm is also minmium-phase (all zeros are inside the unit 

circle) which gauarntees the minimum-group-delay among all 

the filters with the same magnitude response. While the filter 

designed by algorithm in  [13] does not hold this condidtion.  

 

Fig. 2. Magnitude response of the proposed filter and the Wu filter 

 

Fig. 3. Phase diagram of the proposed filter and the Wu filter 

 

Fig. 4 Group delay comparison of the proposed filter, and the Wu filter  

 

Fig. 5. Zero/pole placement of the proposed filter and the Wu filter 

Design 2: In this example, a low-pass FIR filter with narrow 

passband is designed. To this end, the cut-off frequency is 

considered as 𝜔𝑐 = 0.006 𝜋. The minimum-length, low-group-

Filter Design Algorithm 

Set the cut-off frequency (𝜔𝑐) 

𝑛𝑏𝑜𝑡 = 1 

𝑛𝑡𝑜𝑝 = maximum feasible filter order 

while (𝑛𝑡𝑜𝑝 − 𝑛𝑏𝑜𝑡 > 1) do 

𝑁 = 𝑐𝑒𝑖𝑙 (
(𝑛𝑡𝑜𝑝 − 𝑛𝑏𝑜𝑡)

2
) 

     while 𝜌(𝐻(𝑧)) > 1 do 

Increase α 

Solve SOCP in (24) 

 end 

 if ‖𝐴𝑘𝑥‖2 ≤ 0.7079 

  𝑛𝑡𝑜𝑝 = 𝑁 

 else 

  𝑛𝑏𝑜𝑡 = 𝑁 

 end 

end 
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delay FIR filter is designed by solving the optimization 

problems (24) and (30).  In this example, the time of 

convergence for the proposed algorithm is 28 minutes and 58 

seconds. The minimum length of the filter obtained from quasi-

convex optimization problem that meets the selected cut-off 

frequency is 433.  The magnitude and phase of the proposed 

filter is shown in Fig. 6 and Fig. 7, respectively.  

 
a) 

 
b) 

Fig. 6. Magnitude response of the proposed filter a) the magnitude response in 

dB b) detailed plot of the magnitude response  

 
a) 

 
b) 

Fig. 7. Phase diagram of the proposed filter a) the Phase response in radians b) 

detailed plot of the Phase response  

It can be seen that the cut-off frequency (0.00609 𝜋) matches 

with the design criterion. The phase response in Fig. 7 can be 

uniquely specified based on mangnitude response for this filter 

due to minimum-phase feature. Fig. 8 shows the group delay of 

the filter and although the length of the filter is 433, the 

maximum delay reaches to 191.8 samples. the zero/pole 

placment of the filter is shown in Fig. 9 and it can be seen that 

all poles and zeros are inside the unit circle. 

 
a) 

 
b) 

Fig. 8. Group delay diagram of the proposed filter a) the group delay response 

in samples b) detailed plot of the group delay response 

 
a) 

 
b) 

Fig. 9. Zero/pole placement of the proposed filter a) the zero/pole placement b) 

detailed plot of the zero/pole placement 
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However, this design example is not solvable by the method 

proposed in [13] as the defined linearly perturbed optimization 

problem, due to high dimensionality, does not converge, and 

thus the approach is not able to approximate the global solution 

of the original FIR filter design optimization problem. Instead, 

in order to compare and demonstrate the effectiveness of the 

proposed approach the filter with the same passband magnitude 

response is designed using the method proposed by Herrmann 

and Schuessler for MP FIR filter designing. 

It should be noted that in general designing the Herrmann and 

Schuessler filter is not as easy as designing the filter using the 

proposed approach. The proposed approach only relies on one 

parameter and the rest are optimized automatically to minimize 

the length of filter and maximize the attenuation. While the 

Herrmann and Schuessler filter requires four design parameters 

including the passband edge, stopband edge, passband ripple, 

and stopband ripple. Therefore, one of the advantages of the 

proposed approach over traditional FIR filter design approaches 

is simplicity in design. In this experiment to achieve the same 

passband magnitude response, the passband edge of Herrmann 

and Schuessler filter is designed to be 𝜔𝑝 = 0.005370 𝜋, the 

stopband edge is 𝜔𝑠 = 0.007568 𝜋, the passband ripple is 

0.29183, and stopband ripple is 0.05702. 

Fig. 10 shows the magnitude response of the FIR Filters 

designed by the proposed approach and Herrmann and 

Schuessler approach. Although both filters has the same 

passband magnitude response, the attenuation of proposed 

approach in high frequency is considerably higher which leads 

to smoother output. 
 

 
a) 

 

b) 

Fig. 10 Magnitude response comparison of the proposed filter and Herrmann 

and Schuessler filter while the passband magnitude response are the same a) the 

magnitude response in dB b) detailed plot of the magnitude response 

The plot in Fig. 11 validates that the group delay of the 

proposed filter is lower than Herrmann and Schuessler filter 

with the same passband magnitude response.   

In order to show the effect of the cut-off frequency on the 

designed low-pass filter characteristics, the FIR filter is 

redesigned with (a) 𝜔𝑐 = 0.008 𝜋, (b) 𝜔𝑐 = 0.004 𝜋, and (c) 

𝜔𝑐 = 0.012 𝜋. The specifications of each filter are shown in 

Table 1. The results show that by reducing the cut-off 

frequency, the narrower passband is achieved, although, it costs 

higher order of filter. For instance, the optimum length of filter 

satisfying the cut-off frequency constraint (𝜔𝑐 = 0.004 𝜋) is 

650, which means a higher group delay of 288.2 samples.  The 

design result for 𝜔𝑐 = 0.012 𝜋 shows that with the wider 

passband, the optimum length of the filter decreases to 216, 

which means less filter complexity.  

 

Fig. 11. Group delay comparison of the proposed filter, and Herrmann and 

Schuessler filter with the passband magnitude response are the same. 

Table 1: FIR filter specifications with different cut-off frequency 

Designed Cut-off 

frequency (𝝎𝒄) 

Filter 

Length 
Obtained 𝝎𝒄 

Maximum 

Group-delay 

(samples) 

𝟎. 𝟎𝟎𝟒 𝝅 650 0.00402 𝜋 288.2 

𝟎. 𝟎𝟎𝟔 𝝅 433 0.00609 𝜋 191.8 

𝟎. 𝟎𝟎𝟖 𝝅 326 0.0081 𝜋 145 

𝟎. 𝟎𝟏𝟐 𝝅 216 0.0121 𝜋 95.4 

 

The simulation results validate the performance of the 

proposed approach and its simplicity where one can design the 

low-group delay, low-pass filter with just choosing one 

parameter (cut-off frequency) and find the optimum solution in 

a trade-off between the length of the filter and stopband 

attenuation of the filter.  The higher cut-off frequency means 

lower group delay and less stopband attenuation, and the lower 

cut-off frequency means higher group delay and more stopband 

attenuation. Therefore, the filter can be designed for a wide 

range of cut-off frequencies in a short time offline, and then the 

user can easily adjust the level of filtering in real time by 

changing the cut-off frequency while the rest of filter 

parameters has been optimized by the proposed algorithm.  

The future steps in the direction of this research is to apply 

the proposed algorithm in different domains including but not 

limited to the state-of-the-art channel coding in 4G/5G systems, 

for example by replacing the component codes of MIMO-based 

turbo-like coded systems.   

V. CONCLUSION 

In this paper a new methodology for designing a fast 

response FIR filter is proposed. The proposed method designs 

the minimum-phase, minimum-length, low-group-delay FIR 
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filter by employing the convex and quasi-convex optimization 

methods. The polynomial root analysis theorem helps with the 

optimization problem to include minimum-phase feature of the 

filter. The minimum-phase, low-group-delay feature of the 

filter reduces the filter time delay and the minimum-length 

feature of the filter simplifies the filter structure and reduces the 

cost of implementation. Another advantage of the proposed 

technique is to adjust the level of filtering directly by setting up 

the cut-off frequency while the other parameters of the filter are 

optimized automatically by the algorithm. The design 

performance of the proposed approach is validated over 

different design cases. The obtained results and comparisons 

have illustrated that the proposed technique provides lower 

group delay compared with the alternative design techniques. 

In addition, the proposed design algorithm depends on fewer 

design parameters and converges faster compared to the 

alternative design techniques discussed in the paper.  
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